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Logically Reconfigurable PUFs  (LR-PUFs) 

Physically Unclonable Functions (PUFs)  

Physical Security  

Application of LR-PUFs  
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Approach: Use physical properties to build security solutions 
 Example: Key exchange based on quantum physics 

 Differences to classical cryptography/security: 

 Based on physical instead of computational assumptions 

 Might protect against both algorithmic and physical attacks (tamper-evidence)  

Problem: Cryptography cannot protect against physical attacks 
Secrets can be leaked by hardware and/or side-channel attacks 

Challenge: Find appropriate physical primitives that 
 Provide reasonable and verifiable security features 

 Are cost-efficient and easy to implement 

Promising: Physically Unclonable Functions (PUFs) 
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Device 
(e.g., embedded system) 

Hardware Fingerprint 
(unique intrinsic device identifier) 
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Infeasible to predict 
Challenge/response behavior is pseudo-random 

Inherently Unclonable 
Due to unpredictable randomness during manufacturing 

≠ 

Tamper-evident 
Tampering with the PUF hardware changes challenge/response behavior 

Physically Unclonable Function 
(noisy function based on physical 

properties of the device) 

Challenge 

Response 
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Allows to change PUF’s challenge/response behavior after deployment 
Ideally, reconfiguration is equivalent to physically replacing the PUF 

Extends existing PUF-based security solutions 
Example: Secure key erasure/update of secret data bound to PUF 

(reconfiguration of PUF “deletes” secrets bound to PUF) 

Enables new PUF-based security mechanisms 
Example: Protection against software downgrading attacks 

(reconfiguration of PUF invalidates software versions bound to pre-reconfigured PUF) 

Enables new business models 
Example: Recyclable PUF-based access tokens (e.g., RFIDs) 

(reconfiguration of PUF allows secure and privacy-preserving re-use of tokens) 
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Formal security model 
Introduces forward and backwards unpredictability 

(specific for reconfigurable PUFs and not covered by previous PUF models) 

Application example 
Recyclable (i.e., re-usable) access tokens based on LR-PUFs 

Logically Reconfigurable PUFs (LR-PUFs) 
Practical alternative to physically reconfigurable PUFs 

L 

LR-PUF constructions 
Simple and efficient instantiations and their implementation 

(one optimized for speed and one for area consumption) 
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Logically Reconfigurable PUF 
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Control Logic 

(State 𝑺′) 

Physically 

Unclonable 

Function (PUF) 

input 𝑐 output 𝑟 

reconfigure 

challenge 𝑤 response 𝑦 

A similar concept has been proposed independently by Lao et al. [LP11] 
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Control Logic 

(State 𝑺′) 

Physically 

Unclonable 

Function (PUF) 

input 𝑐 output 𝑟 

reconfigure 

challenge 𝑤 response 𝑦 

Control Logic 

(State 𝑺′) 

A similar concept has been proposed independently by Lao et al. [LP11] 
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challenge 𝑤′ response 𝑦′ 

output 𝑟′ 
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≠ Underlying PUF is unclonable and unpredictable 
Can be achieved by using, e.g., a controlled PUF 

Algorithm of control logic is publicly known 
Typical assumption in cryptography (Kerckhoffs's Principle) 

Adversary 
 Can adaptively obtain challenge/response pairs of LR-PUF 

 Knows current and all previous LR-PUF states 

 Cannot set LR-PUF state to a specific value 

 (invasive attacks altering the state of specific memory cells infeasible in practice) 
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Forward Unpredictability 
Adversary cannot predict LR-PUF response for previous states 

(e.g., to recover an old key bound to the PUF) 

Backward Unpredictability 
Adversary cannot predict LR-PUF response for current state 

(e.g., to forge a PUF response in an authentication protocol) 

𝑐, 𝑟 

 

 𝑺𝒊−𝟏  𝑺𝒊 

𝑐, 𝑟 

 

 𝑺𝒊−𝟏  𝑺𝒊 
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𝐴 wins the backward-unpredictability game if 𝑟
∗ is a valid LR-PUF response for state Si and 𝑐

∗
∈ Qi  

 For instance, A may forge a PUF response in an authentication protocol . 

𝐴 wins the forward-unpredictability game if 𝑟
∗
 is a valid LR-PUF response for state Si-1 and 𝑐

∗
∈ Qi-1  

 For instance, A may recover an old key bound to the PUF . 

 𝑺𝒊−𝟏 

 𝑺𝒊 
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𝐶ℎ𝑎𝑙𝑙𝑒𝑛𝑔𝑒𝑟 𝑨 
𝐶 

𝑅 

𝐶 

𝑅 

𝑄i−1={(C 1 ,R1),…, (Cqi-1  ,Rqi-1
)} 

𝑄𝑖 = {(C1 ,R1),…, (Cqi
 ,Rqi

)} 

𝑄i−1 

𝑄i 

 

𝑟𝑐𝑜𝑛𝑓 

 c
∗
, 𝑟

∗ 

Formalization follows game-based approach of Armknecht et al. [AMS+11] 
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Logically Reconfigurable PUF 

Physically Unclonable Function (PUF) 

Reconfiguration Algorithm 

(State 𝑺) 

Input 

Transformation 

Output 

Transformation 
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challenge 𝑤 response 𝑦 

reconfigure 

input 𝑐 output 𝑟 

State 𝑆 
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Logically Reconfigurable PUF 

challenge 𝑤 response 𝑦 

𝑆′ ← Hash(𝑆) 

Hash(𝑆||𝑐) 

reconfigure 

input 𝑐 output 𝑟 

State 𝑆 

Reconfiguration Algorithm 

(State 𝑺) 

Input 

Transformation 
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Physically Unclonable Function (PUF) 
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Logically Reconfigurable PUF 

Physically Unclonable Function (PUF) 

𝑆 ← Hash(𝑆) 
Non-volatile Memory 

(State 𝑺) + (IV) 
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Reconfiguration Algorithm 

(State 𝑺) 

State 𝑆 

LR-PUFS(c) 

 SV  ES(IV) 

 w  Ec(SV) 

 y    PUF(w) 

 r   y 

 return r 

challenge 𝑤 response 𝑦 

output 𝑟 Hash(𝑆||𝑐) 

reconfigure 

64 parallel Arbiter PUFs 

(with large CRP space) 

input 𝑐 
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Logically Reconfigurable PUF 

64 parallel Arbiter PUFs 

(with large CRP space) 

𝑆 ← Hash(𝑆) 

𝑆 

Non-volatile Memory 

(State 𝑺) + (IV) 

PRESENT Block-cipher  

Davies-Meyer mode 
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𝐼𝑉 

𝑆𝑉 

𝐼𝑉 ∶ Initialization vector – 64-bit 

SV  : Session vector – 64-bit 

LR-PUFS(c) 

 SV  ES(IV) 

80 
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Logically Reconfigurable PUF 

64 parallel Arbiter PUFs 

(with large CRP space) 

𝑆 ← Hash(𝑆) 

input 𝑐 

Non-volatile Memory 

(State 𝑺) + (IV) 

PRESENT Block-cipher  

Davies-Meyer mode 
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𝑆𝑉 

𝐼𝑉 ∶ Initialization vector – 64-bit 

SV  : Session vector – 64-bit 

Reconfiguration Algorithm 

(State 𝑺) 

LR-PUFS(c) 

 SV  ES(IV) 

 w  Ec(SV) Non-volatile Memory 

(State 𝑺′) + (IV) 

64 challenge 𝑤 
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Logically Reconfigurable PUF 

challenge 𝑤 

response 𝑦 64 parallel Arbiter PUFs 

(with large CRP space) 

𝑆 ← Hash(𝑆) 

output 𝑟 

Non-volatile Memory 

(State 𝑺) + (IV) 

PRESENT Block-cipher  

Davies-Meyer mode 
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𝐼𝑉 ∶ Initialization vector – 64-bit 

SV  : Session vector – 64-bit 

Reconfiguration Algorithm 

(State 𝑺) 

LR-PUFS(c) 

 SV  ES(IV) 

 w  Ec(SV) 

 y    PUF(w) 

 r   y 

 return r 

Non-volatile Memory 

(State 𝑺′) + (IV) 

64 

64 



Recyclable PUFs: Logically Reconfigurable PUFs 15 

Logically Reconfigurable PUF 

𝑆 ← Hash(𝑆) 
Non-volatile Memory 

(State 𝑺) + (IV) 

PRESENT Block-cipher  

Davies-Meyer mode 
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𝐼𝑉 ∶ Initialization vector – 64-bit 

Reconfiguration Algorithm 

(State 𝑺) 
reconfigure S’  Hash(S ) 

Non-volatile Memory 

(State 𝑺′) + (IV) 

S’=h1[39:0]||h2[39:0] S[39:0]||h1[39:0] Register 
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Logically Reconfigurable PUF 

𝑆 ← Hash(𝑆) 
Non-volatile Memory 

(State 𝑺) + (IV) 

PRESENT Block-cipher  

Davies-Meyer mode 
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𝐼𝑉 

ℎ1 

𝐼𝑉 ∶ Initialization vector – 64-bit 

h1  : hash-1 – 64-bit 

Reconfiguration Algorithm 

(State 𝑺) 
reconfigure S’  Hash(S ) 

Non-volatile Memory 

(State 𝑺′) + (IV) 

S’=h1[39:0]||h2[39:0] S[39:0]||h1[39:0] 

h1 ES(IV) 

𝑆 80 
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Logically Reconfigurable PUF 

𝑆 ← Hash(𝑆) 
Non-volatile Memory 

(State 𝑺) + (IV) 

PRESENT Block-cipher  

Davies-Meyer mode 
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ℎ1 

𝐼𝑉 ∶ Initialization vector – 64-bit 

h1  : hash-1 – 64-bit 

h2  : hash-2 – 64-bit  

Reconfiguration Algorithm 

(State 𝑺) 
reconfigure S’  Hash(S ) 

Non-volatile Memory 

(State 𝑺′) + (IV) 

S’=h1[39:0]||h2[39:0] S[39:0]||h1[39:0] 

h1 ES(IV) 

h2ESK(h1) 

80 ℎ2 
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Logically Reconfigurable PUF 

𝑆 ← Hash(𝑆) 
Non-volatile Memory 

(State 𝑺) + (IV) 

PRESENT Block-cipher  

Davies-Meyer mode 
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𝐼𝑉 ∶ Initialization vector – 64-bit 

h1  : hash-1 – 64-bit 

h2  : hash-2 – 64-bit  

Reconfiguration Algorithm 

(State 𝑺) 
reconfigure S’  Hash(S ) 

Non-volatile Memory 

(State 𝑺′) + (IV) 

S’=h1[39:0]||h2[39:0] 

h1 ES(IV) 

h2ESK(h1) 

S’ h1[39:0]||h2[39:0] 

𝑆’ 

80 

ℎ2 
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Logically Reconfigurable PUF 

challenge 𝑤𝑗 response 𝑦𝑗 

𝑆′ ← Hash(𝑆) 

Hash(𝑆| 𝑐 |𝑗) 

reconfigure 

input 𝑐 output 𝑟 

State 𝑆 

𝑟𝑗 ← 𝑦𝑗 
𝑟 = 𝑦0|| … ||𝑦63 

Single Arbiter PUF 

(with small response space) 

Reconfiguration Algorithm 

(State 𝑺) 

Input 

Transformation 
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64 
1 

64 

Output 

Transformation 80 

80 

𝑗 𝑗 
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Implementation on Xilinx Spartan 6 FPGA 
 Based on Arbiter PUFs (take 64 bit challenge, generate 1 bit response each) 

 Hash function: PRESENT in Davies-Meyer Mode 

Optimization 
Response time 
in clock cycles 

Area consumption in slices (gate equivalents) 

Control logic PUF Total 

Speed 1,069 
166 

(1,162 GE) 
4,288 

(29,056 GE) 
4,454 

(30,218 GE) 

Area 64,165 
358 

(2,506 GE) 
67 

(454 GE) 
425 

(2,960 GE) 

Speed-optimized variant is 63 times faster but 

10 times bigger than area-optimized variant 
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Issues token 

Verifier User A 

Authenticates 

using token Issuer 

Returns token after use 

(gets deposit back) 

User B 

Re-issues token 

(with reconfigured LR-PUF) 

Authenticates 

using token 

B should not be able to use A’s access rights 

CHES2011, October 1st 2011 



Recyclable PUFs: Logically Reconfigurable PUFs 19 

Can increase security and privacy 
Use and re-use small number of advanced tokens instead of 

a large number of low-cost and constrained one-time tokens 

Save money 
No new tokens needed 

Reduce electronic Waste 
Besides obvious ecologic aspects, economic aspect: 

Governments make vendors of electronic equipment 

responsible for disposal of their products 

CHES2011, October 1st 2011 



Recyclable PUFs: Logically Reconfigurable PUFs 20 

We presented 
 Concept of Logically Reconfigurable PUFs (LR-PUFs) 

 Formal security model (backward and forward unpredictability) 

 LR-PUF constructions (optimized for speed and area consumption) 

Discussed potential applications 

L 

Current and Future work 
 Improved LR-PUF constructions allowing for more efficient verification 

 Concrete protocols for LR-PUF-based access tokens 
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Recyclable PUFs: Logically Reconfigurable PUFs 

Although specific instantiations of controlled and logically reconfigurable 

PUFs look similar, they represent different concepts with different objectives! 

Logically Reconfigurable PUFs 
 Objective: Change challenge/response behavior of underlying PUF after deployment 

 Approach: Entangle challenges/responses of underlying PUF with some random state 

 (e.g., by hashing the PUF challenge together with some state) 

Controlled PUFs 
 Objective: Prevent model building attacks that allow emulating the PUF 

 Approach: Hide responses of underlying PUF (e.g., by hashing the PUF response) 
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