
www.unique-project.eu

www.unique-project.eu

Logically Reconfigurable PUFs (LR-PUFs)

Physically Unclonable Functions (PUFs)

Physical Security

Application of LR-PUFs

CHES2011, October 1st 2011 Recyclable PUFs: Logically Reconfigurable PUFs 3

Approach: Use physical properties to build security solutions
 Example: Key exchange based on quantum physics

 Differences to classical cryptography/security:

 Based on physical instead of computational assumptions

 Might protect against both algorithmic and physical attacks (tamper-evidence)

Problem: Cryptography cannot protect against physical attacks
Secrets can be leaked by hardware and/or side-channel attacks

Challenge: Find appropriate physical primitives that
 Provide reasonable and verifiable security features

 Are cost-efficient and easy to implement

Promising: Physically Unclonable Functions (PUFs)

4

Device
(e.g., embedded system)

Hardware Fingerprint
(unique intrinsic device identifier)

CHES2011, October 1st 2011 Recyclable PUFs: Logically Reconfigurable PUFs

Infeasible to predict
Challenge/response behavior is pseudo-random

Inherently Unclonable
Due to unpredictable randomness during manufacturing

≠

Tamper-evident
Tampering with the PUF hardware changes challenge/response behavior

Physically Unclonable Function
(noisy function based on physical

properties of the device)

Challenge

Response

Recyclable PUFs: Logically Reconfigurable PUFs 5

Allows to change PUF’s challenge/response behavior after deployment
Ideally, reconfiguration is equivalent to physically replacing the PUF

Extends existing PUF-based security solutions
Example: Secure key erasure/update of secret data bound to PUF

(reconfiguration of PUF “deletes” secrets bound to PUF)

Enables new PUF-based security mechanisms
Example: Protection against software downgrading attacks

(reconfiguration of PUF invalidates software versions bound to pre-reconfigured PUF)

Enables new business models
Example: Recyclable PUF-based access tokens (e.g., RFIDs)

(reconfiguration of PUF allows secure and privacy-preserving re-use of tokens)

CHES2011, October 1st 2011

Recyclable PUFs: Logically Reconfigurable PUFs 6

Formal security model
Introduces forward and backwards unpredictability

(specific for reconfigurable PUFs and not covered by previous PUF models)

Application example
Recyclable (i.e., re-usable) access tokens based on LR-PUFs

Logically Reconfigurable PUFs (LR-PUFs)
Practical alternative to physically reconfigurable PUFs

L

LR-PUF constructions
Simple and efficient instantiations and their implementation

(one optimized for speed and one for area consumption)

CHES2011, October 1st 2011

Logically Reconfigurable PUF

Recyclable PUFs: Logically Reconfigurable PUFs 7

Control Logic

(State 𝑺′)

Physically

Unclonable

Function (PUF)

input 𝑐 output 𝑟

reconfigure

challenge 𝑤 response 𝑦

A similar concept has been proposed independently by Lao et al. [LP11]

CHES2011, October 1st 2011

Logically Reconfigurable PUF

Recyclable PUFs: Logically Reconfigurable PUFs 7

Control Logic

(State 𝑺′)

Physically

Unclonable

Function (PUF)

input 𝑐 output 𝑟

reconfigure

challenge 𝑤 response 𝑦

Control Logic

(State 𝑺′)

A similar concept has been proposed independently by Lao et al. [LP11]

CHES2011, October 1st 2011

challenge 𝑤′ response 𝑦′

output 𝑟′

Recyclable PUFs: Logically Reconfigurable PUFs 8

≠ Underlying PUF is unclonable and unpredictable
Can be achieved by using, e.g., a controlled PUF

Algorithm of control logic is publicly known
Typical assumption in cryptography (Kerckhoffs's Principle)

Adversary
 Can adaptively obtain challenge/response pairs of LR-PUF

 Knows current and all previous LR-PUF states

 Cannot set LR-PUF state to a specific value

 (invasive attacks altering the state of specific memory cells infeasible in practice)

CHES2011, October 1st 2011

Recyclable PUFs: Logically Reconfigurable PUFs 9

Forward Unpredictability
Adversary cannot predict LR-PUF response for previous states

(e.g., to recover an old key bound to the PUF)

Backward Unpredictability
Adversary cannot predict LR-PUF response for current state

(e.g., to forge a PUF response in an authentication protocol)

𝑐, 𝑟

 𝑺𝒊−𝟏 𝑺𝒊

𝑐, 𝑟

 𝑺𝒊−𝟏 𝑺𝒊

CHES2011, October 1st 2011

Recyclable PUFs: Logically Reconfigurable PUFs 10

𝐴 wins the backward-unpredictability game if 𝑟
∗ is a valid LR-PUF response for state Si and 𝑐

∗
∈ Qi

 For instance, A may forge a PUF response in an authentication protocol .

𝐴 wins the forward-unpredictability game if 𝑟
∗
 is a valid LR-PUF response for state Si-1 and 𝑐

∗
∈ Qi-1

 For instance, A may recover an old key bound to the PUF .

 𝑺𝒊−𝟏

 𝑺𝒊

CHES2011, October 1st 2011

𝐶ℎ𝑎𝑙𝑙𝑒𝑛𝑔𝑒𝑟 𝑨
𝐶

𝑅

𝐶

𝑅

𝑄i−1={(C 1 ,R1),…, (Cqi-1 ,Rqi-1
)}

𝑄𝑖 = {(C1 ,R1),…, (Cqi
 ,Rqi

)}

𝑄i−1

𝑄i

𝑟𝑐𝑜𝑛𝑓

 c
∗
, 𝑟

∗

Formalization follows game-based approach of Armknecht et al. [AMS+11]

Recyclable PUFs: Logically Reconfigurable PUFs 11

Logically Reconfigurable PUF

Physically Unclonable Function (PUF)

Reconfiguration Algorithm

(State 𝑺)

Input

Transformation

Output

Transformation

CHES2011, October 1st 2011

challenge 𝑤 response 𝑦

reconfigure

input 𝑐 output 𝑟

State 𝑆

Recyclable PUFs: Logically Reconfigurable PUFs 12

Logically Reconfigurable PUF

challenge 𝑤 response 𝑦

𝑆′ ← Hash(𝑆)

Hash(𝑆||𝑐)

reconfigure

input 𝑐 output 𝑟

State 𝑆

Reconfiguration Algorithm

(State 𝑺)

Input

Transformation

CHES2011, October 1st 2011

Physically Unclonable Function (PUF)

Recyclable PUFs: Logically Reconfigurable PUFs 13

Logically Reconfigurable PUF

Physically Unclonable Function (PUF)

𝑆 ← Hash(𝑆)
Non-volatile Memory

(State 𝑺) + (IV)

CHES2011, October 1st 2011

Reconfiguration Algorithm

(State 𝑺)

State 𝑆

LR-PUFS(c)

 SV  ES(IV)

 w  Ec(SV)

 y  PUF(w)

 r  y

 return r

challenge 𝑤 response 𝑦

output 𝑟 Hash(𝑆||𝑐)

reconfigure

64 parallel Arbiter PUFs

(with large CRP space)

input 𝑐

Recyclable PUFs: Logically Reconfigurable PUFs 14

Logically Reconfigurable PUF

64 parallel Arbiter PUFs

(with large CRP space)

𝑆 ← Hash(𝑆)

𝑆

Non-volatile Memory

(State 𝑺) + (IV)

PRESENT Block-cipher

Davies-Meyer mode

CHES2011, October 1st 2011

𝐼𝑉

𝑆𝑉

𝐼𝑉 ∶ Initialization vector – 64-bit

SV : Session vector – 64-bit

LR-PUFS(c)

 SV  ES(IV)

80

Recyclable PUFs: Logically Reconfigurable PUFs 14

Logically Reconfigurable PUF

64 parallel Arbiter PUFs

(with large CRP space)

𝑆 ← Hash(𝑆)

input 𝑐

Non-volatile Memory

(State 𝑺) + (IV)

PRESENT Block-cipher

Davies-Meyer mode

CHES2011, October 1st 2011

𝑆𝑉

𝐼𝑉 ∶ Initialization vector – 64-bit

SV : Session vector – 64-bit

Reconfiguration Algorithm

(State 𝑺)

LR-PUFS(c)

 SV  ES(IV)

 w  Ec(SV) Non-volatile Memory

(State 𝑺′) + (IV)

64 challenge 𝑤

Recyclable PUFs: Logically Reconfigurable PUFs 14

Logically Reconfigurable PUF

challenge 𝑤

response 𝑦 64 parallel Arbiter PUFs

(with large CRP space)

𝑆 ← Hash(𝑆)

output 𝑟

Non-volatile Memory

(State 𝑺) + (IV)

PRESENT Block-cipher

Davies-Meyer mode

CHES2011, October 1st 2011

𝐼𝑉 ∶ Initialization vector – 64-bit

SV : Session vector – 64-bit

Reconfiguration Algorithm

(State 𝑺)

LR-PUFS(c)

 SV  ES(IV)

 w  Ec(SV)

 y  PUF(w)

 r  y

 return r

Non-volatile Memory

(State 𝑺′) + (IV)

64

64

Recyclable PUFs: Logically Reconfigurable PUFs 15

Logically Reconfigurable PUF

𝑆 ← Hash(𝑆)
Non-volatile Memory

(State 𝑺) + (IV)

PRESENT Block-cipher

Davies-Meyer mode

CHES2011, October 1st 2011

𝐼𝑉 ∶ Initialization vector – 64-bit

Reconfiguration Algorithm

(State 𝑺)
reconfigure S’  Hash(S)

Non-volatile Memory

(State 𝑺′) + (IV)

S’=h1[39:0]||h2[39:0] S[39:0]||h1[39:0] Register

Recyclable PUFs: Logically Reconfigurable PUFs 15

Logically Reconfigurable PUF

𝑆 ← Hash(𝑆)
Non-volatile Memory

(State 𝑺) + (IV)

PRESENT Block-cipher

Davies-Meyer mode

CHES2011, October 1st 2011

𝐼𝑉

ℎ1

𝐼𝑉 ∶ Initialization vector – 64-bit

h1 : hash-1 – 64-bit

Reconfiguration Algorithm

(State 𝑺)
reconfigure S’  Hash(S)

Non-volatile Memory

(State 𝑺′) + (IV)

S’=h1[39:0]||h2[39:0] S[39:0]||h1[39:0]

h1 ES(IV)

𝑆 80

Recyclable PUFs: Logically Reconfigurable PUFs 15

Logically Reconfigurable PUF

𝑆 ← Hash(𝑆)
Non-volatile Memory

(State 𝑺) + (IV)

PRESENT Block-cipher

Davies-Meyer mode

CHES2011, October 1st 2011

ℎ1

𝐼𝑉 ∶ Initialization vector – 64-bit

h1 : hash-1 – 64-bit

h2 : hash-2 – 64-bit

Reconfiguration Algorithm

(State 𝑺)
reconfigure S’  Hash(S)

Non-volatile Memory

(State 𝑺′) + (IV)

S’=h1[39:0]||h2[39:0] S[39:0]||h1[39:0]

h1 ES(IV)

h2ESK(h1)

80 ℎ2

Recyclable PUFs: Logically Reconfigurable PUFs 15

Logically Reconfigurable PUF

𝑆 ← Hash(𝑆)
Non-volatile Memory

(State 𝑺) + (IV)

PRESENT Block-cipher

Davies-Meyer mode

CHES2011, October 1st 2011

𝐼𝑉 ∶ Initialization vector – 64-bit

h1 : hash-1 – 64-bit

h2 : hash-2 – 64-bit

Reconfiguration Algorithm

(State 𝑺)
reconfigure S’  Hash(S)

Non-volatile Memory

(State 𝑺′) + (IV)

S’=h1[39:0]||h2[39:0]

h1 ES(IV)

h2ESK(h1)

S’ h1[39:0]||h2[39:0]

𝑆’

80

ℎ2

Recyclable PUFs: Logically Reconfigurable PUFs 16

Logically Reconfigurable PUF

challenge 𝑤𝑗 response 𝑦𝑗

𝑆′ ← Hash(𝑆)

Hash(𝑆| 𝑐 |𝑗)

reconfigure

input 𝑐 output 𝑟

State 𝑆

𝑟𝑗 ← 𝑦𝑗
𝑟 = 𝑦0|| … ||𝑦63

Single Arbiter PUF

(with small response space)

Reconfiguration Algorithm

(State 𝑺)

Input

Transformation

CHES2011, October 1st 2011

64
1

64

Output

Transformation 80

80

𝑗 𝑗

Recyclable PUFs: Logically Reconfigurable PUFs 17

Implementation on Xilinx Spartan 6 FPGA
 Based on Arbiter PUFs (take 64 bit challenge, generate 1 bit response each)

 Hash function: PRESENT in Davies-Meyer Mode

Optimization
Response time
in clock cycles

Area consumption in slices (gate equivalents)

Control logic PUF Total

Speed 1,069
166

(1,162 GE)
4,288

(29,056 GE)
4,454

(30,218 GE)

Area 64,165
358

(2,506 GE)
67

(454 GE)
425

(2,960 GE)

Speed-optimized variant is 63 times faster but

10 times bigger than area-optimized variant

CHES2011, October 1st 2011

Recyclable PUFs: Logically Reconfigurable PUFs 18

Issues token

Verifier User A

Authenticates

using token Issuer

Returns token after use

(gets deposit back)

User B

Re-issues token

(with reconfigured LR-PUF)

Authenticates

using token

B should not be able to use A’s access rights

CHES2011, October 1st 2011

Recyclable PUFs: Logically Reconfigurable PUFs 19

Can increase security and privacy
Use and re-use small number of advanced tokens instead of

a large number of low-cost and constrained one-time tokens

Save money
No new tokens needed

Reduce electronic Waste
Besides obvious ecologic aspects, economic aspect:

Governments make vendors of electronic equipment

responsible for disposal of their products

CHES2011, October 1st 2011

Recyclable PUFs: Logically Reconfigurable PUFs 20

We presented
 Concept of Logically Reconfigurable PUFs (LR-PUFs)

 Formal security model (backward and forward unpredictability)

 LR-PUF constructions (optimized for speed and area consumption)

Discussed potential applications

L

Current and Future work
 Improved LR-PUF constructions allowing for more efficient verification

 Concrete protocols for LR-PUF-based access tokens

CHES2011, October 1st 2011

www.unique-project.eu

Recyclable PUFs: Logically Reconfigurable PUFs

Although specific instantiations of controlled and logically reconfigurable

PUFs look similar, they represent different concepts with different objectives!

Logically Reconfigurable PUFs
 Objective: Change challenge/response behavior of underlying PUF after deployment

 Approach: Entangle challenges/responses of underlying PUF with some random state

 (e.g., by hashing the PUF challenge together with some state)

Controlled PUFs
 Objective: Prevent model building attacks that allow emulating the PUF

 Approach: Hide responses of underlying PUF (e.g., by hashing the PUF response)

CHES2011, October 1st 2011

